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Two rigid spheres of radii a and b are immersed in infinite fluid whose velocity at 
infinity is a linear function of position. NO external force or couple acts on the 
spheres, and the effect of inertia forces on the motion of the fluid and the spheres 
is neglected. The purpose of the paper is to provide a systematic and explicit 
description of those aspects of the interaction between the two spheres that are 
relevant in a calculation of the mean stress in a suspension of spherical particles 
subjected to bulk deformation. The most relevant aspects are the relative velocity 
of the two sphere centres (V) and the force dipole strengths of the two spheres 

It is shown that V, Sij and S&. depend linearly on the rate of strain a t  infinity 
and can be represented in terms of several scalar parameters which are functions 
of r / a  and b/a alone. These scalar functions provide a framework for the expression 
of the many results previously obtained for particular linear ambient flows or 
for particular values of r / a  or of bla. Some new results are established for the 
asymptotic forms of the functions both for r/(a+b) >> 1 and for values of 
r - (a  + b )  small compared with a and b. A reasonably complete numerical descrip- 
tion of the interaction of two rigid spheres of equal size is assembled, the main 
deficiency being accurate values of the scalar functions describing the force 
dipole strength of a sphere in the intermediate range of sphere separations. 

In  the case of steady simple shearing motion a t  infinity, some of the trajectories 
of one sphere centre relative to another are closed, a fact which has consequences 
for the rheological problem. These closed forms are described analytically, and 
also numerically in the case b/a = 1. 

1. Introduction 
The velocity distribution in the fluid near an immersed body is affected by 

the presence of a second body in the fluid unless it is far away. There is a con- 
sequent influence on the distribution of fluid stress at the surface of the first 
body, and so on its translational and rotational motion. Such hydrodynamic 
interaction effects are of direct interest in considerations of impact, coalescence 
and migration of small particles of different kinds immersed in fluid. In  the case 
of suspended particles on which no external force or couple acts, hydrodynamic 
interaction occurs when the suspension as a whole is set in motion and may then 
affect the rheological properties of the suspension. 

Szj), as functions of the vector r separating the two centres. 
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If a large number of particles are immersed in fluid with random positions, 
and with a mean distance between nearest neighbours which is large compared 
with the linear dimensions of a particle, the most important hydrodynamic 
interactions will be those between the (relatively few) pairs of particles which 
happen to be close to each other, since groups of three or more adjoining particles 
are even scarcer. This gives special significance to considerations of the inter- 
action of just two particles otherwise alone in a large expanse of fluid. The effect 
of such pair-interactions on the mean settling speed of small spherical particles 
falling through fluid under gravity has recently been examined (Batchelor 1972) ; 
and in a paper which is a companion to the present one (Batchelor & Green 1972, 
to be referred to hereafter as paper 11)) we examine the effect of pair-interactions 
on the mean stress in a suspension of small force-free spherical particles which 
is subjected to a prescribed bulk deforming motion. Both these investigations 
concern statistically homogeneous suspensions in which the volume fraction of 
the particles ( c )  is small compared with unity, and consideration of the effect of 
pair-interactions yields results correct to the order of a power of c which is one 
higher than those obtained by neglecting all interaction effects. 

Our purpose in this paper is to provide information about the interaction of 
two force-free couple-free rigid spheres immersed in a moving fluid, with a view 
to its use in paper I1 for the determination of the mean stress, correct to the 
order c2, in a moving suspension of many such particles. The velocity of the fluid 
far from the two spheres is taken to be a linear function of position of general 
form, and the flow near the spheres is dominated by viscous stresses. An explicit 
solution for the whole flow field in analytical form would be very complicated, 
and perhaps not usable, and it is desirable therefore to focus the inquiry on the 
features that are relevant to the rheological problem, especially the velocities 
of the two spheres and the force dipole strengths of the spheres. We shall give 
expressions for these relevant quantities, the forms of which are independent of 
the nature of the linear ambient flow field and of the ratio of the radii of the two 
spheres. These general expressions, which contain some unknown scalar func- 
tions, provide a framework for the expression of detailed results obtained for 
particular linear ambient flow fields and radius ratios by previous authors (Lin, 
Lee & Sather 1970 in particular). We shall also obtain some new approximate 
analytical results for the interaction of two spheres both when they are far 
apart and when bhey are very close together, and fit these inbo the same frame- 
work. A reasonably complete description of the interaction is obtainable in the 
case of two rigid spheres of equal size, and, although the values of the scalar 
functions are not yet known accurately in some parts of the range of values of 
the distance between the two sphere centres, it  proves to be possible in paper I1 
to obtain the desired estimate of the mean stress in a dilute suspension of rigid 
spherical particles of uniform size correct to the order c2. More work is needed 
on the problem of two spheres of different size in a linear ambient flow before 
it will be possible to calculate the mean stress in a suspension of spheres of non- 
uniform size. 

In  most previous mathematical investigations of low-Reynolds-number flow 
involving two rigid spheres, or a rigid sphere and a plane rigid boundary 
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(effectively a second sphere of infinite radius), the spheres have been assumed to 
be moving with specified velocities, or moving under the action of specified 
forces or couples, through fluid at rest at  infinity (e.g. Stimson & Jeffery 1926; 
Goldman, Cox & Brenner 1966, 1967a; O’Neill & Stewartson 1967; Cooley & 
O’Neill1968,1969; Davis 1969). The analytical methods used in these investiga- 
tions are generally similar to those needed for the range of problems considered 
here, in which the two rigid spheres, or one sphere in the presence of a plane 
boundary, are force-free and couple-free and are immersed in fluid with a specified 
linear velocity variation far from the spheres; and a number of particular cases 
have been studied (Goldman, Cox & Brenner 19673; Wakiya, Darabaner & 
Mason 1967; O’Neill 1968; Lin et aE. 1970; Goren 1970; Goren & O’Neill 1971; 
Wakiya 1971). The results obtained for all such particular cases can be in- 
corporated into the general representation of the interaction of two force-free 
and couple-free spheres that we now describe.? 

2. General expressions for the sphere velocities and force dipole strengths 
We consider two rigid spheres of radii a and b on which no external force or 

couple acts and which are immersed in incompressible fluid of viscosity ,u with 
no other boundaries present. The spheres are of such small size that the Reynolds 
number of the fluid motion is small and inertia forces can be neglected. The 
ambient flow field (that is, the flow field in the absence of the two spheres) has 
velocity U ( x ,  t )  which is assumed to be a linear function of position and can 
therefore be characterized instantaneously by a uniform rate-of-strain tensor 

and a rigid-body rotation with angular velocity 

Q = QVxU. 

The instantaneous position of the centre of the sphere of radius a is x0 and that 
of the sphere of radius b will be denoted by xo + r. 

The formal hydrodynamic problem for the velocity u ( x )  and pressure p ( x )  
in the fluid is governed by the Stokes equations of motion 

v p  = ,uv2u, v.u = 0. 

The outer boundary condition is 

U&X) N Eijxi+siikQjxa as 1x1 + CO, 

t I n  a paper published after this work had been submitted, Brenner & O’Neill (1972) 
have provided a similar, and more comprehensive, general framework for the expression 
of results concerning the forces and couples acting on two spheres moving with prescribed 
translational and rotational velocities in fluid whose velocity far from the spheres is 
a linear function of position. In  the present paper we consider only the case of two rigid 
spheres on which no external force or couple acts, but we go further with this case by 
giving numerical results and by including consideration of the force dipole strengths of 
the spheres. 
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and the no-slip condition must be satisfied a t  the surfaces of the two spheres, 
I x - x , ~  = a and Ix-x,-rI = b. The translational and rotational velocities of 
the two spheres are determined by the conditions that there is zero resultant 
force and couple exerted on each sphere by the hydrodynamic stress at the 
surfaces. 

We wish in particular to determine certain parameters of this flow field in- 
volving two spheres, viz. 

(1)  the translational velocity of the centre of the sphere of radius b relative to 
that of the sphere of radius a, to be denoted by V; 

( 2 )  the angular velocities of the spheres of radii a and b, to be denoted by r' 
and I"' respectively; and 

(3) the force dipole strengths of the two spheres, to be denoted bySij and Sij 
respectively. (The force dipole strength Sii for a rigid body with surface A ,  and 
unit outward normal n is defined as 

~ i j  = S,. ( v i , ~ X j - ~ ~ i i j v z k X E ) n h d ~ ,  (2.1) 

where vij is the hydrodynamic stress at  position x. The origin for the position 
vector in the integrand in (2.1) is arbitrary when the body is force-free. S,ij is 
a symmetrical tensor, in the absence of an externally applied couple to the body, 
and by definition has zero trace. It may be shown (Batchelor 1967, $4.1 1) that, 
if there is an outer boundary A ,  to the fluid at  which the velocity is specified as 
xj XJJ8xj, the direct contribution to the rate of dissipation of energy due to the 
presence of the body within A ,  is EiiSij; this is one aspect of the connexion with 
the bulk dynamics which makes the force dipole strength of interest in the 
rheological problem considered in paper 11.) 

The quantities V, r', I?", SiJp and S;Jp are functions only of r, a, b, Ei j  and 8. 
The only instantaneous consequence of the rotation of the fluid a t  infinity is to 
superimpose a uniform angular velocity 9 on the whole system. And relative 
to axes rotating with angular velocity 9, the governing equations and boundary 
conditions are linear and homogeneous in the fluid velocity and pressure and Eij. 
Consequently, each of the five quantities V - 9 x r, I" - 8, I"' - 9, Sij, Sij must 
be linear and homogeneous in Eii. 

Thus with no loss of generality we may write for the polar vector V 

(2 .2)  

where r = I r I and the dimensioiiless scalar quantities A and B are functions only 
of the non-dimensional distance r/a and the radius ratio bla. The precise form of 
(2 .2 )  has been chosen so as to make the radial and circumferential components of 
V depend only on A and B respectively. Likewise for the axial vectors r' and r" 
we have 

where C' and C" are dimensionless functions of r/a and b/a only. It follows from 
the definition of these scalar functions that 

A(b/a)  = A ( @ ) ,  B(b/a) E B(a/b),  C'(b/a) = C"(a/b).  
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When the two spheres are far apart, each sphere moves approximately as if it, 
were alone in infinite fluid, that is, 

A- tO,  B- tO,  C‘+O, C”+O as r/(a+b)+co. 

Similarly, we may express the force dipole strength of one sphere, which is 
a symmetrical tensor with zero trace, in the form 

where the quantities K’,  L‘ and M’ are functions only of the scalar variables r/a 
and b/a. There is a similar expression for the force dipole strength S& of the second 
sphere of radius b, and K’(b/a) = K”(a/b), etc. 

We shall make some use of the solution of the Stokes equations for a single 
rigid force-free sphere of radius a with centre a t  x0 in fluid whose velocity in the 
absence of the sphere is U with uniform gradient at infinity characterized by Eii 
and S2. This isolated sphere rotates with angular velocity G? and its centre has 
velocity U ( x , ) ,  and the expressions for the velocity u and pressurep at position x 
in the surrounding fluid are known to be 

where X = x - x o ,  X = 1x1 2 a, and 

a5 X , X  ( 5a3 I 5a5) )  
ai(X,a) = EikXi - S i k - - + 2  -- [ x5 x2 2 x 3  2x5 

is the disturbance velocity due to the presence of the sphere. We note also the 
following derived expressions associated with this case of flow due to a single 
rigid sphere in infinite fluid which is being strained and rotated: 

+Ekl*(T-+Sii) x x x,xi 

V2ui = EijXj ( - - 1 L g 3 ) + E j , X f X j X k  

2x3 

S . X ,  5a3 
($V X U ) ~  = R ~ + E ~ ~ ~ E , , +  (2X3) ’  - 

(2.9) 

for S > a. 
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The local stress can be obtained from (2 .5)  and (2 .7 )  and then we find from (2.1) 
that the force dipole strength for a single sphere of radius a in infinite fluid is 

Xij = -3$7ra3pE,ii. 
It follows from (2 .4)  that 

(2 .10)  

K’+O, L‘+O, M ‘ + O  as r / ( a + b ) - + c o ,  (2 .11)  

and likewise for K”, L“, M”. 
The velocity disturbance (2.6) due to a single sphere is a limiting form of that 

due to the presence of spheres in two senses, one as ./(a + b )  -+ co, as already 
remarked, and the other as b / a  + 0. And if one sphere is very much smaller than 
the other, the smaller sphere moves with the local translational and angular 
velocity of the fluid in the flow field due to the other sphere alone in infinite fluid. 
Thus we may compare ( 2 . 2 )  and (2 .6)  to find that 

(2 .12)  

when b /a  = 0. Also, the angular velocity of the large sphere will be just that of 
the ambient flow, whilst the small sphere will take up the local angular velocity 
of the fluid in the flow due to a single sphere, whence a comparison of ( 2 . 3 )  and 
(2 .8 )  shows that 

(2 .13)  

when b/a = 0. Similarly, comparison of (2 .4 )  with (2.10) and (2 .7)  shows that 

(2 .14)  I h” = 0, L’ = 0, M’ = 0, 

25a3 35a5 7 II =--, a5 & ‘ I = - - + -  5a3 5a5 a”= 
rs 2r3 r5 ’ 2r3 2rs ’ 

--- 

when b / a  = 0. 
Finally, it should be noted again that the expressions (2.2),  (2 .3 )  and (2 .4 )  

hold for any values of Eij and C2 (which may depend on time), and that the 
dimensionless scalar functions appearing in these expressions depend on ./a 
and b/a only and are independent of the bulk flow. As a consequence, calcula- 
tions made for particular ambient flow fields, such as pure straining motion or 
simple shearing, can be used as a source of information about the values of the 
scalar functions A ,  B, etc. In  the following three sections the forms of all the 
scalar functions will be investigated. 

In paper I1 we shall be concerned with spherical particles composed of fluid 
of viscosity ,u’, with a surface tension at the interface which may be either infinite 
or zero (the particles being spherical only instantaneously in this latter case). 
It is evident from the derivation that the expressions (2 .2 ) ,  (2 .3 )  and (2 .4)  are 
equally valid for two such fluid spheres provided the scalar functions A ,  B, etc. 
are then allowed to depend on ,u.‘/,u as well as on r/a and bla. 
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FIGURE I .  Notation used in the investigation of far-field asymptotic forms, 

3. Far-field analytic forms for the functions 
When the distance r between the centres of the two spheres is large compared 

with either of the two radii a and b, the various functions representing the 
kinematic and dynamic aspects of the hydrodynamic interaction take approxi- 
mate forms which may be derived by simple methods. These asymptotic ex- 
pressions are needed for an assessment of the convergence of integrals over an 
infinite domain which arise in the rheological problem considered in paper 11. 
They prove to be accurate over a surprisingly large part of r-space, and are also 
useful as a framework for computation. 

We begin by considering the functions A and B, both functions of r/a and bfa 
only, which occur in the expression (2.2) for the velocity V of the centre of 
a rigid sphere of radius b, with instantaneous position X, + r, relative to that of 
a sphere of radius a with instantaneous position x,. The fluid velocity has a linear 
variation at  infinity characterized by Eij  and S2 as before. The position vector 
of an arbitrary point in the fluid is X, and X = x - x,. (The notation is shown also 
in figure 1.) 

The leading approximation to  the relative velocity V whenIr/(a + b) $ 1 may 
be obtained from a consideration of the velocity that would exist in the fluid 
in the absence of one of the spheres. It is known that when a force-free rigid 
sphere of radius b is placed, with its centre a t  the point x,+r, in unbounded 
fluid in which the velocity is u(x) (the consequences of the fact that in reality 
there is a spherical boundary present at  I X - - X , I  = a will be examined in a 
moment), then under the conditions of the Stokes flow the velocity taken up by 
the centre of that sphere is exactly 

t This result is sometimes called Faxen's first law ; a simple proof is given in the appendix 
to a recent paper (Batchelor 1972). 
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We now interpret u(x) in this expression as the velocity distribution due to the 
presence of a single sphere of radius a with centre a t  xo, whence on substitution 
from (2 .5 )  the sphere velocity (3 .1)  becomes 

~ ( X O )  + Etirj + Eijk  Q j r k  + {'f&(x, a)  f $b2V24ii(X, a)},=, . (3 .2)  

But the introduction of the sphere of radius b with centre at xo + r will itseIf cause 
a change in the velocity of the sphere of radius a at xo which, under the same 
restrictions, becomes 

q(x0) + {+&(X, b)  + 3 a 2 V 2 ~ i ( X ,  b)}x=-r. (3 .3 )  

The leading approximation to 
and on using (2.6) and (2.9) we find 

is then the difference between (3 .2 )  and (3 .3) ,  

{ 3(a5 + b5) + 5a2b2(a+ b) )  K(r) M €ijkQjrk+Eijrj 1 -  
3r5 

5 (a3+b3)  15 (a5+b5)+25a  ( 
+ E j k r i r j r k { -  zr5 + 6r7 2b2 a + b ) ) .  (3.4) 

The expression (3.4) has zero divergence with respect to r, and for subsequent 
application in determining the bulk stress in a suspension it is necessary to take 
the calculation of V to one higher order term. 

The above expression for V has been determined in effect by choosing the dis- 
tribution of force over the surface of each sphere to satisfy the no-slip condition 
a t  that surface, taking account of the background linear velocity field and the 
disturbance velocity due to the other sphere; and the error in it is due wholly to 
this disturbance velocity being estimated as if that other sphere were alone in 
infinite fluid. Now the effect of the presence of sphere a with centre at xo is to in- 
duce, in a region with linear dimensions b centred on xo + r, a disturbance velocity 
which is approximately uniform with magnitude of order lEijl a3/r2, and a dis- 
turbance rate of strain, of order IE,J a3/r3, given by (2 .7) .  The effect of this in- 
duced velocity on sphere b with centre at x0 + r is to change its translational 
velocity by the same amount, since the sphere moves freely; and the effect of 
this induced rate of strain is to change the net force dipole strength of the sphere b 
in the manner represented by (2 .10 ) .  This additional force dipole strength then 
in turn induces a disturbance velocity at the position of sphere a which is 
obtainable, to leading order, from the one term of order ( a / X ) 2  in (2.6) with a 
replaced by b, X replaced by r, and Ejk  replaced by the terms of order (a/r)3 in 
the expression (2 .7)  for the rate of strain induced at  position xo+r by the 
sphere a. Bearing in mind again the reciprocal action of one sphere on another, 
we see that the right-hand side of (3.4) should be corrected by the addition of 

+ similar expression with a and b exchanged, 
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Comparison of the general expression (2.3) for &(r) with the approximation 
represented by (3.4) and (3.5) together then shows that for r B a+b 

Asymptotic forms for the relative translational velocity of the centres of two 
spheres of different sizes in an ambient simple shearing motion have been 
developed by Wakiya et al. (1967), and it may be shown that their results are in 
accordance with (3.6). 

Next we seek asymptotic forms for the scalar functions li’, L‘, H’ and K”, 
L”, MI‘ occurring in the general expression (2.4) for the force dipole strength of 
one of the spheres. This can be done by arguments which are analogous to those 
that led to the Faxen expression (3.1) and to (3.6). The same arguments also 
yield asymptotic expressions for the angular velocities of the two spheres and of 
the functions C’ and C” occurring in (2.3). 

We shall first obtain an expression for the force dipole strength of a rigid 
sphere of radius a which is placed, with centre at  x,, in fluid in which the velocity 
before the introduction of that sphere is given by u(x). If there are no other 
boundaries to the fluid, the surface density of force (f) which must be applied to 
the fluid at the surface of the sphere (A,) in order to ensure satisfaction of the 
no-slip condition there is given exactly by the integral equation: 

for all x on A,, where I’ is the angular velocity taken up by the sphere and 

is the tensor coefficient in the linear relation between the velocity induced in the 
fluid and a point force applied to the fluid a t  relative position y. The desired result 
is obtained by multiplying both sides of (3.7) by (x - x , ) ~  and integrating over A,. 
It may be found, by straightforward working, that 

8na 
15 

(x - Xo)k l{j(x - XI) d A ( x )  = - {4(x’ - Xo)k sij - (x’ - X0)< sj, - (x’ - xo)j Ski); 

and then the symmetric and antisymmetric parts of the integrated form of (3.7) 
become, for a couple-free sphere whose force dipole strength is defined by (2 . l ) ,  

Sij = 2$77a3p(eji + &a2V2ei3)x=x,, (3.8) 

(3 .9)  r = 4(V x U)x=xo, 
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where eij(x) is the rate of strain corresponding to the velocity distribution u(x). 
(The relation (3 .9)  is the second Faxen law, for a couple-free sphere; but (3 .8 )  
appears to be new.) 

The rate of strain eij in (3 .8 )  and vorticity V x u in (3 .9 )  may now be interpreted 
as that due to the presence of a single sphere of radius b with centre at x0 + r in 
infinite %uid with uniform velocity gradient at infinity, in which case the values 
of eii, V2eii and V x u at position xo are obtained from (2.7) and (2.8) by replacing 
a and X by b and -r respectively (after differentiation, in the case of V2eij) .  
In  this way we find for the force dipole strength and angular velocity of sphere a 
in the presence of sphere b 

) ( 25b3 35b3(a2+ b 2 ) ) )  isii -- 
2r3 2r5 

(3 .10)  

(3 .11)  
5b3 r; M Qi + eiik E,, r j  r, 2r5 . and 

The errors in (3 .10)  and (3.1 I )  arise wholly from the fact that the effect of the 
presence of the sphere b has been estimated as if that sphere were alone in infinite 
fluid. An improved approximation to Sii may be obtained by noting that, as 
a consequence of the presence of the sphere a with centre at xo, the approximately 
uniform rate of strain in the fluid in which the sphere b is immersed exceeds Eij 
by an amount shown by (2.7) to be 

The disturbance due to the sphere b is correspondingly greater, and the rate of 
strain that the sphere b induces at  the location of the centre of sphere a and which 
is to be substituted in (3 .8)  is greater than that previously estimated by the 
amount 

correct to the order (a+b)6/r6 .  The correction to the expression (3 .10)  for S&. 
is then 2+%7a3,u times this, and is found, after multiplying out, to be 

23i-a3pEnzn (T ""i 'm S,,, + 7 Sin - - 2r r " S i j +  4 r i r ; ~ r n )  25a3b3 (3 .12)  
r .r 

r2 4r6 ' 

We may now obtain an expression for Xij which is correct to the order of 
(a+ b)6/r6 by adding (3 .12)  to the right-hand side of (3 .10) .  The asymptotic forms 
for the functions K',  L' and M' defined by (2 .4 )  are then seen to be 

h" = - 
r5 

(3.13) 
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L’ = --+ + - + 0 (+) 9 (3.14) 

(3.15) 

The corresponding asymptotic forms for R”, L“, M” are obtained by interchanging 
a and b in (3.13), (3.14) and (3.15). 

In exactly the same way we can improve the approximation (3.11) to  the 
angular velocity of one of the spheres, and then comparison with (2.3) shows that 
the asymptotic form of the function C‘ when (a  + b) / r  < 1 is 

5b3 5b3(a2+ b2) 25a3b3 a + b)6 

zr3 r5 4rG 

25b3 35b3(a2 + b2) 

2r3 2r5 
MI=--  

5b3 25a3b3 a+b)G C‘ = 2r3 4r6 +’(&)’ (3.16) 

with that €or c“ being obtained by interchanging a and b in (3.16). Again there is 
agreement, with the asymptotic expressions for the angular velocities of two 
spheres of different sizes in an ambient simple shearing motion developed by 
Wakiya et al. (1967). 

Further terms in the above expansions of two-sphere functions in powers of 
l/r can of course be obtained by iterative methods. But, to judge by experience 
with some other two-sphere quantities, such as the common translational 
velocity of two equal spheres moving through fluid under the action of equal 
external forces, such expansions are unlikely to be useful when the two spheres 
are close together. It is necessary to employ other ways of calculating the func- 
tions in the range in which ?/(a + b) is of order unity, and the  above outer asymp- 
totic forms provide only an analytical supplement to that more extensive and 
inevitably mainly numerical computation. 

4. Data obtained from full solutions for the velocity distribution due to 
two spheres in particular ambient flow fields 

In this section we use several exact calculations which have been made by 
previous authors for interactions between two spheres in particular ambient 
flow fields, as a source of information about the forms of the scalar functions 
A ,  B, C’ and c“. Much of this information refers to the case of spheres of equal 
size. Unfortunately the calculations to be described in this section tell us nothing 
about the functions K’, L’, M’, K”,  L”, M”, and our knowledge of these functions 
is at  present restricted to their far-field asymptotic forms given in 8 3 and to some 
information which will be derived in $ 5  about their behaviour when the spheres 
are touching (and that only for b/a = 1) .  

4.1. Two spheres in a steady simple shearing motion 

In a recent extensive investigation of the kinematics of a two-sphere encounter, 
Lin et al. (1970) give an exact series expression for the velocity distribution in 
terms of bispherical co-ordinate solutions of Laplace’s equation for the case of 
two force-free rigid spheres of arbitrary radius ratio in a steady simple shearing 

25 F L M  56 
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ria A 3 ( r )  C ( r ) ,  C"(r) 

20.1353 0.0006 0~0000 0.0003 
11-1139 0.0036 0~0000 0.0018 
6-2149 0.0204 0.0006 0.0103 
4.7048 0.0468 0.0023 0.0234 
3.6213 0.1033 0.0086 0.0501 
3.3370 0.1331 0.0130 0.0633 
3.0862 0.1704 0.0193 0.0791 
2.8662 0.2167 0.0281 0.0976 
2.6749 0.2735 0.0399 0.1190 
2.5103 0.3424 0.0553 0.1433 
2.3709 0.4248 0-0748 0.1709 
2.2553 0.5214 0.0988 0.2019 
2.1621 0.6313 0.1275 0.2369 
2.0907 0.7505 0.1608 0.2767 
2.0401 0.8679 0.1996 0.3230 
2.0100 0.9619 0.2461 0.3806 
2.0025 0.9900 0.2762 0.4195 
2.0006 0.9975 0.2968 0.4469 
2.0001 0.9996 (0.4426) (0.3265) 
2.00006 0.9998 (0.7266) (0.0407) 

TABLE 1. Values of the functions A,  B, C' and C" describing the velocities of two equal 
spheres derived from the numerical data of Lin et at. (1970). The data in parentheses are 
inconsistent with the asymptotic forms found in fc 5. 

motion. The relative velocity of the two sphere centres and the angular velocities 
of the two spheres are not obtained explicitly, but they can be computed and the 
authors give numerical results for the case of equal sphere sizes. The functioiis A ,  
B, C' and C" defined by (2 .2 )  and ( 2 . 3 )  are independent of the bulk flow, and 
the numerical data presented by Lin et ab. can be interpreted to yield the values 
of these functions. A comparison of the expressions for V, I" and I?" given by (2 .2 )  
and ( 2 . 3 )  for the particular case of a simple shearing motion with the expressions 
given by Lin et al., which are described in terms of several functions of r denoted 
by script letters, shows the following relations between the two sets of functions 
(for b/a = 1): 

(4.1) 
% 2x2 
r r '  

A = 1 - - ,  B = - -  C ' = C " = & - 1 .  

The comparison also shows that the functions used by Lin et al. must satisfy 
the identities 

2-d = r, 8-9 = 2 ;  (4-2) 

their tabulated numerical values confirm this. 
The values of the functions A ,  B, C' and C" derived from the data of Lin et al. 

using (4. 1) are shown in table 1 and figure 2. The far-field forms of these functions 
found in 9 3 are also shown in figure 2,  and are seen to be accurate for remarkably 
small values of the separation of the spheres. 

The values given in table 1 suggest that the gradients of the functions B and 
C', C" are very large a t  r/a = 2 (for this case of equal spheres). There is evidently 
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I S  I ^  ” 
2.0 2.5 3 0  3 5  

rla 

FIGURE 2. Graphs of the functions A ,  B, C’ and C“ describing the velocities of two equal 
spheres. The encircled points correspond to the numerical data of table 1. The broken 
lines show the far-field asymptotic forms of these functions found in Q 3. 

need for an investigation of the analytical forms of these functions near r/a = 2. 
We shall provide this in 3 5. The singular behaviour of some of the functions a t  
r /a  = 2 renders the calculations of Lin et al. less accurate when the spheres are 
very nearly touching, and the derived values of these functions a t  r/a = 3.00006 
and 2-0001, shown bracketed in table 1, are certainly inconsistent with the 
asymptotic forms found in 3 5. 

This full solution for the velocity distribution obtained by Lin et ul. could also 
be used for the computation of the functions K‘, L‘, Jf’, I<”) M”, N ”  describing 
the force dipole strengths of the two spheres. We understand from Prof. Sather 
that such computations are now being made. 

4.2. Two equal spheres in an axisymmetricflow system 

The results of an exact solution for the flow due to two equal rigid spheres in 
a more restricted type of ambient flow field will be recorded here. (Details of the 
solution have been given elsewhere by Green 1971 .) The sphere centres lie on the 
axis of a steady axisymmetric pure straining motion which is characterized by 

(4.3) E 11- - E  2 2 -  --La , E,,= G, E i j =  Oif i + j ,  

and B = 0. This solution can provide information about only one of the functions 
A ,  B, C‘, C“, since, as a consequence of the chosen geometry, the angular velocities 
of the two spheres are zero and the circumferential component of V (which 
involves B )  is zero. Likewise it can give only one linear relation between the three 
functions K‘, L’, M’ (or K’, L”, 34”). 

2 5 - 2  
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The solution was obtained by the same method employing bispherical co- 
ordinates as was used by Lin cf al. (1970). The Stokes stream function of the fluid 
motion is written as an infinite series of bispherical harmonics, the coefficients of 
which are determined by the no-slip condition a t  the surfaces of the two spheres. 
It is then possible to derive an exact relation between the total force (0, 0, T Fs) 
on a sphere and an assumed relative velocity (0, 0, V,) of the two spheres. The 
value of the solution lies in the fact that the analytical form of this relation be- 
tween Fe and V,  allows evaluation near the singular limit when the spheres are 
touching, thereby giving values of A(r)  in a range where the data from Lin et a.1. 
(1970) are not accurate. It is found that when 6 < 1 

2;", = -&-a,~V,(fl-~+&logfl-~+ 2.763)+ 12.2337ra2pG+O(@), (4.4) 

where fl  = (r - 2a)/a, and the corresponding expression for V,  obtained by setting 
the force on each sphere equal to zero is 

T i  = 8+155aGt{1 +O(@)). (4.5) 

The form taken by the general expression (2.2) for the radial component of the 
relative velocity V when r = (0, 0, r )  and the components of Eij are as in (4.3) is 
rC( 1 - A ) ,  whence it follows that 

A(?) = 1 - 4*077fl+ O($) (4.6) 
when < < 1 and b/a = 1.  

in this axisymmetric flow field can also be evaluated, and is found to be 
The additional rate of energy dissipation due to the presence of the two spheres 

38.217ra3,uG2{1 + O(6) )  (4.7) 

when 6 1. The general expression for the additional rate of dissipation is 
2EijSii, where Sij is given by (2.4), and on substituting the special values of the 
components of ri and Eij  and equating to (4.7) we find 

+K' + 2L' + M' = 1.366 + O ( t )  (4.8) 
when 6 

Far-field asymptotic forms of the functions A(r )  and $K' + 2L' + M' have also 
been deduced from this axisymmetric flow field, but these merely confirm (3.6) 
and the appropriate combinations of (3.13), (3.14) and (3.15). 

1 and b/a = 1. 

4.3. A sphere in the presence of a plane wall 

We first make use of an exact solution given by Goldman et al. (1967b) for the 
motion of a force-free couple-free rigid sphere in a simple shearing motion in the 
presence of a stationary plane rigid wall in order to find the forms of the functions 
B and C" when bla < 1.  If one of our two spheres if very much smaller than the 
other, the small sphere is effectively immersed in the flow due to the large sphere 
alone, that is, in the flow field given by (2.5) and (2.6). Near apoint on the surface 
of the large sphere of radius a where the unit normal is n, the velocity relative to  
the surface in the absence of the small sphere is 

ui z 5 ( X - a )  Ejl,nj(dik-nink) 14.9) 
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r - a  a'/ 15(ibZ a)2  - (1 -A) -  ~ 

b b2 
10 
8 
6 
4 
3.7622 
2.5 
2.3524 
1.5431 
1.5 
1.1276 
1.1 
1.05 
1.0453 
1.01 
1.0050 
1.0032 
1.001 

1.0015 
1.0016 
1.0008 
0.9932 

0.9475 
- 

- 
0.7135 

0.2579 
0.1429 

- 

0.03139 
0.01591 

0.00322 
- 

0.9996 
- 

- 
0.9944 

0.9777 
0.9219 

0.7669 

- 

- 

- 
- 

0.6538 

0.4786 
0.4529 

- 

C" 

2.4988 
- 
- 

- 
2.4858 

2.4445 
2.3092 

1.9479 

- 

- 

- 

1.6866 

1.2705 
1.2075 

- 

TABLE 2. Values of the relative velocity functions for the case b/a -g 1, deduced from the 
data of Goldman, Cox & Brenner (1967 b)  in the case of B and C" and from that of Goren & 
O'Neill (1971) in the case of A .  

when X - a  < a, which represents (locally) a simple shearing motion with a 
velocity gradient of magnitude 

K = 5{E,jE,,n,n,(6jl-w.jn,)}B. (4.10) 

A small sphere of radius b with centre at distance r -a  ( < a )  from the surface in 
this simple shearing motion moves parallel to the surface with a translational 
velocity relative to the surface whose magnitude is seen from (2.2) to be of the 
form 

(-1.11) 

and with a rotational velocity relative to that of the big sphere (which is approxi- 
mately a, as noted in (2.13)) whose magnitude is seen from (3.3) to be approxi- 

W = ; K C .  (4.12) mately 

By combining the exact solution for the translation and rotation of a sphere 
near a wall in fluid a t  rest a t  infinity with that for an immobilized sphere near a 
plane wall in a simple shearing motion, Goldman et al. (1967 b )  obtain expressions 
for the translational velocity W and angular velocity w of a force-free couple-free 
sphere with centre a t  distance h from a, plane wall in a simple shearing motion 
with velocity gradient K .  They evaluate W/bK and WIK numerically as functions 
of h, and the corresponding values of the functions B and C" obtained from (4.11) 
and (4.12) by identifying h with r - a  are indicated in table 3. 

An exact solution which may be used in a similar way to obtain values of the 
function A for b/a < 1 is that given by Goren & O'Neill(l97 I )  for the velocity of 
a rigid sphere driven toward a plane rigid boundary by a stagnation-point flow. 
We find from (2.5) and (2.6) that, near a point on the surface of the sphere a 
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where the unit normal is n, the component of velocity relative to and normal to 
the surface in the absence of sphere b is approximately 

X - a  
Eij ni nj 

when 5- a < a. And from our general expression (2.2) for the relative velocity 
of the two sphere centres we see that the component of this relative velocity 
parallel to the line of centres is approximately 

a ( l - A ) n i n j E i j  

when b and r - a are small compared with a. The ratio of these two quantities 
(with S equated tor)  is equal to the ratio of the functions f andfo, values of which 
are given in table 3 of the paper by Goren & O'Neill, whence we obtain the values 
of A given in table 2 above. 

We note that the values of the functions A,  B and C" for large (r - a)/b (but 
still such that (.-a)/. < I) are consistent with the forms found in (2.12) and 
(3.13) for this case b/a < I .  

These exact solutions of Goldman et al. (19673) and Goren & O'Neill (1971)  
could also provide some information about the functions K", L" and M", but the 
necessary computations have not yet been carried out. 

5. Near-field analytic forms for the functions 
Asymptotic forms of the functions representing the hydrodynamic interaction 

may also be found for distances between the centres of two spheres which are 
very close to the limiting value a + b, although these are less complete than the 
far-field asymptotic forms derived in 5 3. As already noted, some of the functions 
have gradients which are singular at r = a + b, and it has been found necessary 
in paper I1 to use these asymptotic forms rather than numerical data for values 
of r close to a+ b. 

The calculation of the asymptotic forms of the functions A ,  B, C' and C" 
occurring in the expressions (2.2) and (2.3) rests on the familiar idea of repre- 
senting the actual flow field as a superposition of two auxiliary flow systems. I n  
one of these the two spheres together move as a force-free couple-free rigid dumb- 
bell in fluid which has the specified uniform rate of strain Eij and angular velocity 
S2 a t  infinity. I n  the other the two spheres are forced by external agencies to have 
their actual additional motions in fluid which is a t  rest a t  infinity. I n  the first 
of these auxiliary flow systems the fluid exerts a force F(A) and a couple GcA) 
(about the centre) on one sphere, say the sphere b, due solely to the ambient flow; 
and in the other the fluid exerts a force F(" and a couple GcS) (about the centre) 
on sphere b due solely to the motion of the spheresrelative t o  the force-free couple- 
free dumb-bell. The actual translational and rotational velocities of each of the 
spheres must then satisfy the pair of equations 

F@) + F(A) = 0, G W  + G(A) = 0. (5.1) 

When the two spheres are nearly touching FCS) and G@) are dominated by the 
contributions from the stresses of large magnitude in the thin layer between the 
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two neighbouring sections of the sphere surfaces due to the forced relative motion 
of these two surfaces. This relative motion of the two surfaces is described most 
conveniently in terms of a moving Cartesian co-ordinate system (x, y ,  z) with 
the origin permanently at the centre of sphere a, all three axes permanently 
fixed in sphere a, and the z-axis instantaneously in the direction of the line of 
centres. The components of the vector r separating the centres of the two spheres 
will be written as 

0, 0, (a  + b )  (1 +it). 
The components of the velocity of the centre of sphere b are then 

V,- (a  + b) (1 + 85) r;, 4 + (a  + b) (1 + $5) r;, c, 
and the angular velocity of this sphere is I”’ - I”. It may be shown by the methods 
of lubrication theory that when < 1 the components of the hydrodynamic 
force exerted on sphere b due to the relative motion of the two spheres are 
approximately 

FL8) = p(a+b)  [ -a{%-(a+b)  r j }+p(a+b)  (r;-l?;)]logt?, (5.2’) 

Pf) = p(a+b)  [-ol{V,+(a+b) r;}-p(a+b) (F;-r;)]logt-l, (5.2”) 

(5.2”‘) 

where a and /3 are dimensionless functions of bla alone with values of order unity 
in general. Similarly, the x and y components of the couple on the sphere b 
about its centre due the relative motion of the two spheres are found to be 
approximately 

GL8) = ,u(a+b)2[-P{liy+(a+b) r;}-y(a+b) (l?;-l?;)]logt-l, (5.3’) 

GLs) = p ( a  + b)2 [p{V, - ( a  + b) I?;} - y (a  + b)  (I?; - I?;)] log t-l, (5.3“) 

where y is a dimensionless function of b/a alone with value of order unity in 
general.? The neglected terms in (5.2) and (5.3) are necessarily linear in the 
relative translational and angular velocities of the adjoining surfaces of the two 
spheres, and so vanish with 6 in the case of spheres which are force-free and 
couple-free. 

Now the force and couple exerted by hydrodynamic stresses on one of the two 
spheres moving as a force-free couple-free rigid dumb-bell in fluid with rate of 

7 The identity of the coefficients represented by p in (5.2’) and (5.2”) on the one hand, 
and in (5.3’) and (5.3”) on the other, follows from the same argument as is used (see Happel 
& Brenner 1965,chap. 5) to establish identity of the corresponding coefficients for a body in 
translational and rotational motion through fluid which is otherwise unbounded. The values 
of a, /3 and y have been found explicitly by O’Neill & Majumdar (1970) to be as follows: 
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strain Eij  and angular velocity S2 at infinity can depend only on a, b,  p, E j j  and r, 
and SO an argument like that used to obtain (2.2)) (2 .3 )  and (2.4) shows that 

FiA) = p(a + b )  rk El, (r;l. 23 P + ( Sij - - 'i:) Q )  (5.4) 

r . r  
GiA) = p(a+b)2ei jkEkl+'R,  r (5.5) 

where P ,  Q and R are functions only of rla and bla. It is important to note that 
there are no singularities in the stress in this auxiliary flow system in which the 
two spheres move as a rigidly connected pair, so that the functions P ,  Q and R 
have values of order unity however close r may be to its limiting value a + b .  
The component of FcA) along the line of centres of the two spheres is then 

M p(a + b)2  E,, Po (5.6) 

when f ;  < 1, where Po is the value of P a t  r = a + b  and E,, = Ejkrjrk/r2.  Ex- 
pressions for the other components of FcA) and GcA) in the directions of the x, y 
and z axes may be found in a similar way. 

We may now use the balance equations (5.1) to determine the relative motion 
of the surfaces of the two spheres and thereby to find the limiting forms of A ,  B, 
C' and C" as f ;+O.  From ( 2 . 2 )  we see that the general form of the component of 
V along the line of centres is 

r . V  r . r .  
r r 

v, = - = - = E i j ( 1 4 ) )  

M ( a + b ) E z z ( l - A )  

when ( < 1. It follows then from (5.2"') and (5.6) that the required asymptotic 
form of A is 

f ; + o ( O *  
( U + ~ ) ~ P ~  

1 2n-a2b2 
A = l -  (5.7) 

Similarly, we find from (5.2') and (5.4) that 

(5.8) 
Q 

log g-1' a( l -B-C' ) - /3 (C"-C' )  = 2 

where Q0 is the value of Q at r = a + b. An identical relation results from the 
balance between F f )  and FLA). The required balance between the two contribu- 
tions to the couple on one sphere, GLm and GLA), yields the further relation 

RO 
log 5-1 ) 

/ ? ( l - B - C ' ) + y ( C " - C ' )  = -- (5.9) 

and the same relation comes from the y-components. From (5.8) and (5.9) we 
find that when < 1 

(5.10) 
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where Co is the common value of C" and C' a t  r = a + b, and 

(5.11) 

The asymptotic forms (5.7), (5.10) and (5.11) contain the two parameters Po 
and C, which depend only on the radius ratio b/a. 

We note incidentally that the gradients of B, C' and C" are infinite at  6 = 0, 
as surmised in 3 4. I from the numerical data given in table 1 for the case b/a = 1.  

There seems to be no reason to expect the functions K',  L', M ' ,  K", L", M" 
to have singular properties at  r = a + b, and presumably they all approach finite 
limiting values smoothly as r --f a + b. (The relation (4.8) derived from the exact 
solution for two equal spheres in an axisymmetric pure straining motion shows 
that one linear combination of K', L', M' certainly has a finite gradient at  5 = 0.) 
The additional rate of dissipation of energy due to the presence of the two spheres 
in the linear ambient flow field is 

ri rk r . r  r r 
r2 r4 

+ E i j E j k -  ( 2 a 3 L ' + 2 b 3 L ' ' ) + E i j E , , ~ ' ( a 3 M ' + b 3 M " )  

and so a calculation of this additional rate of dissipation for three different orienta- 
tions of a pair of touching spheres (which would move as a rigid body) in any linear 
ambient flow field would provide the values of a3K'+b3K", a3L'+b3L" and 
a3M' + b3M" at r = a + b. Unless b/a = 1 or b/a < 1, three more numerical rela- 
tions must be obtained in some way to allow the values of K' and K", etc. to 
be determined separately, although for the purpose of calculating the bulk stress 
in a suspension of spherical particles of non-uniform size only the combinations 
like a3K' + b3K" are required. The one calculation of the above type which has 
been carried out for a particular value of b/a is mentioned below. 

Calculations for the case b/a = 1 

The values of all the parameters appearing in the above asymptotic forms can 
be given for the case of two spheres of the same size. 

In  $4.2  we saw from an exact solution for the movement of two force-free 
equal spheres along the axis of an axisymmetric pure straining motion that FL? 
and FLA) do indeed have the forms given in (5.2"') and (5.6) when the gap between 
the sphere surfaces is small, and that 

Po = 3 . 0 5 8 ~ ;  (5.13) 

this exact solution also shows that the error term in (5.7) is of order 5%. The 
expression for A in the case b/a = 1 is therefore 

A(r )  = 1-4.077E+O(~*) 

when 5 = ( r  - 2a)/a < 1, as already noted in (4.6). 
Walciya (197 1)  has recently determined the motion of a force-free couple-free 

doublet of two equal spheres in contact (and moving as a single rigid body) 
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(/ / u  = 2~000035) (r/cl= 74067) ( r ja  = 2.0357) 

(log [-1)-1 

FIGURE 3. Graphs of the functions B, C' and C" for the case of two equal spheres for small 
values of [( = (T - 2a)/a). The marked points a t  [ = 0 (A for B, for C', C") are derived 
from the near-field theory of $ 5  and are accurate. The other marked points ( x for U, 
0 for C', C") correspond to the computed values shown in table I, the accuracy of which 
decreases as 5 + 0. The broken lines are near-field asymptotic forms, with the coefficients 
of (log [-l)-l chosen on the basis of consistency with the more reliable of the values from 
table 1. 

immersed in a simple shearing flow, and from his expression for the commoii 
angular velocity of the two spheres we see that 

Cb = 0.5940. (5.14) 

The asymptotic forms for B, C' and C" are consequently 

B(r)  = 0.4080 + 0 

C'(r) = c''(r) = 

(5.15) 

(5.18) 

in the case b/a = 1.  
For the purposes of the rheological calculation in paper 11, it is desirable to 

have an improved approximation to the function B(r) near = 0. The explicit 
determination of the term of order (log[-l)-l in (5.15) would require matching 
of the expansions in the inner lubrication layer between the two spheres and the 
'outer' field determined by the linear ambient flow, for a non-axisymmetric 
flow field. This appears to be a feasible calculation, but it has not yet been done 
for the case of two equal spheres. Meanwhile we may estimate the coefficient of 
(10g[-l)-~ in the expansion for B by fitting the asymptotic form t o  the values 
of B obtained from the data of Lin, Lee & Sather (1970) and given in table 1. In  
figure 3 we show a plot of B and C', c" as a function of (log The values of 
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B and C’, C” a t  r/a = 2-00006 (which lie outside figure 3 altogether) and 2.0001 
given in table 1 are inconsistent with the known limits as r/a -+ 2 and must be 
discarded; and the accuracy of the values a t  r /a  = 3.0006 is suspect. It appears 

(5.17) 
t,hat the relation 

B(r) = 0.4060-- 

joins the other tabulated values of B smoothly, although the coefficient - 0.78 
could prove to be in error by several percent. In  paper I1 we shall regard this 
relation as the specification of B in the range 3 < 9.1. < 3.0025. A similar estimate 
of the coefficient of (log ij-l)-l in the asymptotic form for C‘ and c“ in this case 
of equal spheres is - 0.108. 

In his work on the motion of a doublet of two equal spheres in contact immersed 
in a simple shearing flow, Wakiya (1971) also found the additional rate of dis- 
sipation due to the presence of the doublet, a t  any orientation, by calculating the 
rate a t  which work must be done a t  the surface of a sphere of large radius in 
order to maintain the flow. For a simple shearing flow in which the ambient 
velocity has components (KX,, 0 , O )  with respect to a Cartesian co-ordinate system, 
and for b/a = I ,  the expression (5.12) for the additional rate of dissipation re- 
duces to 

where I,, I,, 1, are the components of the unit vector r / r  along the line of centres 
of the spheres. This is of the same form in I,, I,, 1, as the expression given by 
Wakiya, and we infer from his numerical coefficients that  for equal spheres 

0.78 
log (-1 

-~7rdpt?{ 1 + K’ + (1: + 1;) L’ + 212,1; MI}, 

K’ = K” = - 0.0472, L‘ = L“ == 0.1928, M’ = MI’ = 1.0508 (5.18) 

at  r/a = 3. 
It will be seen that these limiting values are consistent with the asymptotic 

form (4.8) found for a particular combination of the three functions from the 
exact solution for two equal spheres in an axisymmetric pure straining motion. 

Calculations for the case bla -+ 0 

The only case of different sphere sizes for which similar calculations appear to 
be feasible a t  the moment is that in which one sphere is so much larger that its 
surface can be treated as a plane boundary. Values of the components parallel 
to the plane surface of the ambient flow force FcA) and couple GW) acting on a 
stationary sphere of radius b in contact with a plane boundary can be obtained 
from the calculation by O’Neill (1968) of the force and couple on such a sphere- 
plane combination in an ambient simple shearing flow. On balancing the com- 
ponents of this force and couple against those due to relative motion of the sphere 
and plane (as given by (5.3’), (5.2”),  (5.3’) and (5.3”)) we can find asymptotic 
forms of the functions B and C“ which are valid for gap widths small compared 
with b. Similarly the asymptotic form of the function A can be found by combining 
Goren’s (1970) calculation of the normal component of F(”), for a stationary sphere 
in contact with a plane boundary and a t  the axis of symmetry of a flow towards 
the plane, with the estimate (5.2”’) of the normal component of the force F(” 
due to sphere movement. 
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However, the asymptotic forms of A ,  B and c" obtained in this way are likely 
to be of limited value in a calculation of the mean stress in a suspension of spheres 
of non-uniform size, since they are applicable only in a very restricted range of 
values of the distance between the centres of two spheres of quite different size, 
viz. 0 < r - a - b < b, a range which is two orders of magnitude smaller than the 
radius a of the bigger sphere. 

6. The relative trajectories of the sphere centres 
I n  all considerations of instantaneous aspects of the interactions of two spheres 

in a linear ambient flow field, the only consequence of the uniform vorticity at 
infinity is to contribute a rigid-body rotation with angular velocity S2 to the whole 
flow field, fluid and spheres together. It is for this reason that we are able to find 
forms for the functions describing instantaneous kinematical and dynamical 
properties of the interaction which are independent of S2.  There are, however, 
some other aspects of the interaction which depend on the history of the motion, 
one of these being the path traced out by one sphere relative to the other. Some- 
what surprisingly, the nature of the family of trajectories of one sphere centre 
relative to the other is found in paper I1 to be important in considerations of the 
probability density function for the separation vector r in a suspension of 
spheres subjected to a linear bulk flow, this being a function which occurs in the 
expression for the bulk stress correct to the order c2. It is important in particular 
to know whether any of the relative trajectories in a steady linear ambient flow 
are closed, and if so what shape they have. We shall address ourselves here to  
these questions for two particular steady linear ambient flow fields, viz. pure 
straining motion and simple shearing motion. 

When Eij  and S2 are independent of time, as we shall assume, the trajectories 
of one sphere centre relative to another coincide with 'streamlines ' of the velocity 
distribution V(r) given by ( 2 . 2 ) .  In  the particular case b/a = 0, when A and B 
have the forms (2.12), the relative trajectories coincide with the actual stream- 
lines of the flow due to the sphere a alone in the given ambient flow field. 

Xteady pure strainin,g motion 

When A2 = 0 and Eii is constant, all the trajectories of one sphere centre 
relative to another come from infinity and are open, for any value of bla. This is 
self-evident, although lack of knowledge of the analytical forms of the functions 
A and B in the expression for the relative velocity V makes a formal proof 
difficult. Let El,  E,, E,  be the three principal rates of extension of the bulk 
flow, where El > E, > E,. Then if we introduce spherical polar co-ordinates in 
r-space, with 0 = 0 in the direction of the principal rate of extension El,  and 
B = $r, q5 = Oin the direction of the principal rate of extension E,, it can be shown 
from (2 .2 )  that the components of V are 

V ,  = r( 1 - A )  {El cos2 8 + ( E ,  cos2 #J + E, sin2 q5) sin2 O } ,  

V, = &r( 1 - B) sin 28{E2 -El + (E,  - E,) sin2 $1, 
V, = +r( 1 -23) (E, -E2) sin Bsin 2q5. 

(6.1) J 
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Reference to table 1 shows that A < 1 and B < 1 for all r in the case b/a = 1, 
and the same is true when b/a < 1.  If this is true generally - this is what we are 
taking to be self-evident-it follows that &/sin 28 is everywhere negative. Thus 
the centre of sphere b will move relative to that of sphere a in such a way that 8 
tends monotonically to zero if 0 < &T initially and to n- if 8 > in initially. And 
a t  values of 8 near 0 or T,  > 0 for all r (and becomes proportional to r ultimately), 
showing that each trajectory goes to (and comes from) infinity. The form of the 
trajectories could be calculated explicitly from (6.1) in the cases b/a = 1 and 
b/a < l 7  but will not be needed. The trajectories fill the whole of the accessible 
part of r-space (that is, the part for which r 3 a + b), and are qualitatively similar 
in shape to the streamlines of the flow due to a single rigid sphere in a pure 
straining motion. 

Xteady simple shearing motion 

I n  this case there is an extensive region of closed trajectories which do not 
extend to infinity. ‘Bound pairs of spheres in a steady simple shearing motion 
were observed by Darabaner & Mason (1967). The existence of closed trajectories 
can also be shown theoretically and their shapes determined. The analysis needed 
is similar to that used by Cox et al. (1968) for the investigation of the closed 
streamlines in flow due to a single rigid sphere in a steady simple shearing 
motion. 

We choose the ambient flow velocity to have components ( K X ~ ,  0,O) relative to 
rectilinear co-ordinates, whence 

0 a K  0 
E = jb : 0) and 8 = ( O , O ,  -3.). 

It will be convenient also to employ spherical polar co-ordinates (r ,  8, $), with 
origin a t  the centre of the sphere with radius a and 0 = 0 in the direction of the 
x,-axis. The corresponding components of the velocity of the centre of sphere b 
relative to that of sphere a are found from the general expression (2.1) to be 

(6.2) 1 
y, = K (  1 - A )  rsin20sin $ cos $, 
?$ = K (  1 - B )  r sin 8 cos 0 sin $ cos $, 
V, = - K r  sin 8{sin2 $ + $B(cos2 q5 - sin2 $)>. 

The path of the second sphere centre relative to the first is then the intersection 
of the two surfaces given by 

and 

From (6.3) we find 

where r3 = r cos 0 is the component of r in the direction of the x3-axis, and, 
from (6.4), a(tan2 0 sin2 9) - B sin8 __-- 

38 1 - B ~ 0 ~ ~ 6 ”  
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which can also be written as 

(2. R. Batchelor and J .  T.  

where r, = rsinOsinq5. 

Equation (6.5) can be integrated numerically, once A and B are known as 
functions of r ,  t o  give r, as a function of r as the relation defining one family of 
surfaces, and then equation (6.6) can be integrated to give r2 as a function of r 
for the other family of surfaces. The choice of the two constants of integration 
specifies two particular surfaces, one from each family, and the intersection of 
these two surfaces specifies a particular trajectory. A convenient way of choosing 
the two constants of integration specifying a particular trajectory is in terms of 
the values R,, R, taken by r2 and r3 at the point (which may not be real) on the 
trajectory where r = co. The integrals of (6.5) and (6.6) can then be written as 

and 

where A’ = A(r’), B’ = B(r ’ ) ,  r i  = r3(r’). 
An open trajectory which extends to infinity is obtained from (6.7) and (6.8) 

by giving R, and R, real values corresponding to the location of the trajectory 
in the (x,, x,)-plane far downstream (or upstream). This was done explicitly 
by Lin et al. (1970) for the case of two equal spheres, and some of the open trajec- 
tories found by them for R, = 0 (these being trajectories which lie in the plane 
of symmetry x, = 0, with the value of r3/R3 being given as a function of r by 
(6.7)) are reproduced in figure 4. For the case R, = 0, R, = 0, corresponding to 
a trajectory which coincides with the x,-axis far downstream, Lin et al. found a 
curve which asymptotes to tho z,-axis as shown. This suggests the existence of 
closed trajectories lying between the reference sphere and this limiting open tra- 
jectory for which R, = 0,  and one of us (Green 1971) has found them explicitly by 
extending the calculation of the surfaces (6.7) and (6.8) into the range R$ < 0 for 
this case of equal spheres. Two of these closed trajectories, again with R, = 0, are 
shown in figure 4; and the limiting case of the circle r: + r$ = 4a2 may be shown to 
correspond to R$ = - 0 . 7 6 ~ ~ ~  (approximately). 

All trajectories for which Ri > 0 are open, and all for which Rg < 0 are closed, 
and the surface bounding the region occupied by closed trajectories is found, by 
putting R, = 0 in (6.8) and eliminating R,, to be given by 

This is an axisymmetric surface which in the case of equal spheres is formed by 
rotating about the x,-axis the curve in figure 4 corresponding to R, = 0 together 
with the mirror-image curve in the lower half of the (x1,x2)-plane. Somewhat 
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FIGURE 4. The trajectories, in the plane x3 = 0, of the centre of one sphere relative to that 
of another of the same size in a steady simple shearing motion. The open trajectories 
(RJa = 1, 2, 3) and the limiting trajectory (R, = 0) are taken from Lin et al. (1970). 
Two closed trajectories (Ri/az = -0.0168, -0.123) have been calculated from (6.7) and 
(6.8). The boundary of the region of closed streamlines in the steady flow around an 
isolated sphere is shown as a broken line. All these curves are symmetrical about both the 
x1 and z2-axes. 

surprisingly, the region occupied by closed trajectories has infinite volume. We 
may see this by noting from (3.6) that, as r/a + 00, 

a5 + b5 + @W(a + b )  
A ( r )  = 0 (g) , B ( r )  N 

9-5 
7 

a5 + b5 + $u2b2(a + b )  
3r3 

so that (6.9) becomes ri  N (6.10) 

The surface which bounds the region of closed streamlines in the case of flow 
due to a single sphere of radius a in steady simple shearing motion is also given 
by (6.9), with b = 0, and its intersection with the plane x3 = 0 is shown as a broken 
curve in figure 4; it  has a similar asymptotic form, with the coefficient of r-3 in 
(6.10) replaced by $-a5. 

I n  the case of spheres of equal size it is found that all the closed trajectories 
lying in the plane of symmetry x3 = 0 pass very close indeed to the inner limit 
r/a = 2 (although this is not so when b/a < 1, as may be seen from the limiting 
trajectory for this case in figure 4). It appears that  the two equal spheres are 
swept together by the ambient shearing motion until the gap between their rigid 
surfaces is small enough for strong ' lubrication stresses to be generated locally. 
The inner asymptotic forms for A and B obtained in § 5 are needed in a calculation 
of the minimum distance between the two surfaces on a closed trajectory which 
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lies near the plane x3 = 0. Significant observations of closed relative trajectories 
of two spheres of comparable size in a steady simple shearing motion will evidently 
require the use of spheres whose surfaces are spherical within very narrow 
tolerances, because a small departure from sphericity might change the trajectory 
when the separation of the two centres passes through its minimum. 
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